skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hao, Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Temperature sensing and control systems are widely used in the closed-loop control of critical processes such as maintaining the thermal stability of patients, or in alarm systems for detecting temperature-related hazards. However, the security of these systems has yet to be completely explored, leaving potential attack surfaces that can be exploited to take control over critical systems. In this paper we investigate the reliability of temperature-based control systems from a security and safety perspective. We show how unexpected consequences and safety risks can be induced by physical-level attacks on analog temperature sensing components. For instance, we demonstrate that an adversary could remotely manipulate the temperature sensor measurements of an infant incubator to cause potential safety issues, without tampering with the victim system or triggering automatic temperature alarms. This attack exploits the unintended rectification effect that can be induced in operational and instrumentation amplifiers to control the sensor output, tricking the internal control loop of the victim system to heat up or cool down. Furthermore, we show how the exploit of this hardware-level vulnerability could affect different classes of analog sensors that share similar signal conditioning processes. Our experimental results indicate that conventional defenses commonly deployed in these systems are not sufficient to mitigate the threat, so we propose a prototype design of a low-cost anomaly detector for critical applications to ensure the integrity of temperature sensor signals. 
    more » « less
  2. Insulin pumps have been widely used by patients with diabetes. Insulin pump systems adopt wireless channels with few cryptographic mechanisms, which makes them vulnerable to many attacks. In this paper, we focus on the wireless channel between Carelink USB and insulin pump on which the attackers can launch message eavesdropping and/or therapy manipulation attacks, which may put the patient in a life-threatening situation. Some prior solutions such as certificate-based or token-based schemes need either complicated key management or additional devices. We propose a novel voiceprint-based access control scheme comprising anti-replay speaker verification and voiceprint-based key agreement to secure the channel between the Carelink USB and insulin pump. Our scheme does not need permanent key sharing or additional devices. The anti-replay speaker verification adopts cascaded fusion of speaker verification and anti-replay countermeasure to ensure the insulin pump can be accessed by Carelink USB only after the legitimate user passes the identity verification. The evaluation on ASVspoof 2017 datasets shows that our scheme achieves a 4.02% Equal Error Rate (EER) with the existence of replay impostors. Besides, our scheme uses energy-difference-based voiceprint extraction and secure multi-party computing to generate a common cryptography (temporary) key between the Carelink USB and insulin pump, which can be used to encrypt the subsequent communication, and protect the insulin pump from eavesdropping and therapy manipulation attacks. By appropriately setting the similarity threshold of voiceprints, our key agreement scheme allows the insulin pump to establish a secure channel only with the device in its close proximity. 
    more » « less